* Change mips24k -> mips74k for hwpmc, but leave it disabled for now.
* don't build pci by default.
* build pci and qca955x_pci for AP135, as theres a PCIe NIC.
* don't build a hwpmc module, it doesn't really work out well
for the mips boards at the moment.
* add ipfw and DEFAULT_TO_ACCEPT.
The carambola2 exposes all the gpio pins, but some are reserved for
core functions (eg usb, ethernet, etc.) Others are configured by default
to be available as normal GPIO pins to do interesting things with.
GPIO 18->23 is the I2S, SLIC and SPDIF device pins, but none of those
are currently used. So, just allow those to show up.
Tested:
* AR9344, Carambola 2
* (.. bitbang SPI to an Adafruit LCD via libgpio, because FreeBSD could
do with more shiny output devices that aren't network interfaces.)
TODO:
There are some other pins aren't currently included here, but should be.
The LED pins are for the internal switch inside the AR9344.
* GPIO 0+1 are "LED0 + LED1", but they're tied to high for bootstrapping.
* GPIO 13-17 are "LED2..7", but they're tied (H, L, L, L, H) for bootstrapping.
* GPIO 11 and 12 are UART RTS/CTS or I2S; but GPIO 12 is tied L for bootstrap.
The MAC addresses were totally wrong. They're like the DIR-625C1 - at
0x1ffe0004 and 0x1ffe0018. They're however stored as text strings.
The ath0 MAC address is also not set, even though the calibration
partition is valid.
So, pick the board address / first MAC as the ath0 MAC, and derive
arge0/arge1 from that. That way they're hopefully unique enough
for people with multiple devices.
Tested:
* DIR-655A1
TODO:
* Do the same for the DIR-625A1 and DIR-625C1.
This allows the TL-WDR3600 to use the correct MAC address for ath0, ath1
and arge0. arge1 isn't used; until I disable it entirely it'll just
show up with a randomly generated MAC.
Without this the autotuning fails for small amounts of RAM (32mb),
which all the AR91xx shipping products seemed to have.
Thanks to gjb for reminding me to re-test this stuff.
Tested:
* AR91xx, TP-Link TL-WR1043nd v1
This is based on the AP135 design - QCA9558 SoC, 3x3 2GHz wifi, but no
5GHz (11n or 11ac) chip is available.
It however still has 128MiB of RAM, 16MiB of NOR flash and the AR8327N
gigabit switch - so it's quite a beefy router device.
Tested:
* Well, a unit, naturally
Obtained from: Completely messing up an amazon.com order and getting this instead, and asking "hey, wonder if I could.."
* add ipfw
* delete ath / ath_ahb for now, until I can have Warner beat me
with the clue stick about putting in conditional build things into
the ath Makefile so the module builds can just have the HAL bits
that are relevant for a particular target.
These are actually almost the same units; except one is 3x3 5GHz, and
one is 2x2 5GHz.
Tested:
* TP-Link TL-WDR3600
TODO:
* The ath0/ath1 MAC addresses are ye garbage (00:02:03:04:05:06); fixing
that will take a little more time. It works fine with the ath0/ath1
MAC addresses set manually.
* Go through and yank the AR9344 on-board switch config (arswitch1);
it's not required here for this AP.
* Force the arge0 interface to not use a PHY for speed negotiation
for now. It'd be nice to do it, but right now the RGMII interface
to the switch needs to stay at 1000/full in order to match what
the switch side of the port is programmed as.
So until that's all sorted out, disconnect arge0 from the PHY
and leave it at fixed at 1000/full.
I noticed this when I tried using a busted ethernet cable that
forced the PHY to negotiate 100/full. The switch was fine and
it negotiated to 100/full, but then arge0 saw the link update
and set the speed to 100/full when the switch side of that
hook up was set to 1000/full. Tsk.
* When using argemdio, the mdio device resets and initialises
the MAC, /not/ the arge_attach (or, as I discovered, arge_init.)
So arge1 wasn't being fully initialised and thus no traffic
would ever flow.
So until I tidy up that mess, just create an argemdio bus for
arge1. It's totally fine; it won't do anything or find anything
attached to it.
Tested:
* AP135 reference board - both arge0 and arge1 now work.
This is a QCA9558 SoC (2ghz 3x3) with an atheros 11ac PCIe 5GHz 3x3
NIC and an AR8327 gigabit ethernet switch.
TODO:
* The AR8327 gigabit switch support bugfixes are forthcoming.
* 11ac support and 11ac NIC support
This is enough to bring up the basic SoC support.
What works thus far:
* The mips74k core, pll setup, and UART (or else well, stuff would
be really difficult..)
* both USB 2.0 EHCI controllers
* on-board 2GHz 3x3 wifi (the other variant has 2GHz/5GHz wifi on-chip);
* arge0 - not yet sure why arge1 isn't firing off interrupts and thus
handling traffic, but I will soon figure it out and fix it here.
Tested:
* AP135 reference design, QCA9558 SoC, pretending to be an 11n
2GHz AP.
TODO:
* There's an interrupt mux hooking up devices to IP2 and IP3 - but it's
not a read-and-clear or write-to-clear register. So, trying to use it
naively like I have been ends up with massive interrupt storms.
For now the things that share those interrupts can just take them as
shared interrupts and try to play nice.
* There's two PCIe root complexes /and/ one of them can actually be
a PCIe device endpoint. Yes, you heard right. I have to teach the
AR724x PCIe bridge code to handle multiple instances with multiple
memory/irq regions, and then there'll be RC support, but EP support
isn't on my TODO list.
* I'm not sure why arge1 isn't up and running. I'll go figure that
out soon and fix it here.
Thankyou to Qualcomm Atheros for providing me with hardware and
an abundance of documentation about these things.
This avoids universe trying to build MALTA_COMMON and fail due to
the problem addressed in r276773.
Include std.MALTA from the MALTA mipsel and MALTA64 mips64el config files,
where the machine lines exist.
The QCA955x has more mux interrupts going on - and the AR934x actually does,
but I cheated and assigned wlan and pcie to the same interrupt line.
They are, there's just a status register mux that I should've been using.
Luckily this isn't too bad a change in itself - almost all of the
Atheros MIPS configurations use a _BASE file to inherit from.
Except PB92, which I should really fix up at some point.
The AR934x will use the legacy apb for now until I write its replacement.
The QCA955x SoC I'm doing bring-up on will have a separate qca955x_apb.c
implementation that includes hooking into IP2/IP3 and doing further
interrupt demuxing as appropriate.
Special thanks to Nicholas Esborn for the loaner router to get this
target bootstrapped.
Review: D777
Reviewed by: adrian
Sponsored by: Nicholas Esborn <nick@desert.net>
commit 6d3c4c09226ad6bdd662e3e52489ef294a6ce298
Add terasic_mtl vt(4) framebuffer driver
terasic_mtl can be built with syscons(4) and vt(4) attachments, selected
at compile time.
commit 33240259b47a7c990a5a88a19f133a5600432a4c
Clear terasic_mtl text buffer on attach
commit d188c2d2412953f949624aa35cd07082830943c9
Update terasic vt(4) driver for FreeBSD r269783
commit d1cc54eee852fa4fc9d359d5bb2171d24ec73369
Safety belt to ensure vt(4) fb parameters are correct
commit 76e6d468ef45711d7952786095fc4791289ebb4b
Improve terasic_mtl_vt fdt parsing
- Use OF_getencprop to avoid need for explicit endian handling
(submitted by ray@freebsd.org)
- Check for expected length and correct pointer type
commit 3e2524b8995ab66e8a9295e4c87cbc7126eeddf4
Correct device_printf usage
commit 9e53e3c8e0766414e25662c95b09cc51c92443b0
Switch framebuffer to match host endianness
Xorg and xf86-video-scfb work much better with a native-endian
framebuffer.
commit 0f49259d596321ed85288ac0e1fb4ee1c966df48
Switch DE4 to vt(4) and enable kbdmux
commit 5bc96ebc89db7d134ad478335090c8477c1677c7
Add missing \n in device_printf calls
Submitted by: emaste
Sponsored by: DARPA, AFRL
have chosen different (and more traditional) stateless/statuful
NAT64 as translation mechanism. Last non-trivial commits to both
faith(4) and faithd(8) happened more than 12 years ago, so I assume
it is time to drop RFC3142 in FreeBSD.
No objections from: net@
configs. Switch the BERI_NETFPGA_MDROOT to 64bit by default.
Give we have working interrupts also cleanup the extra polling CFLAGS from
the module Makefile.
MFC after: 2 weeks
- Update FDT file for BERI DE4 boards.
- Add needed kernel configuration keywords.
- Rename module to saf1761otg so that the device unit number does not
interfere with the hardware ID in dmesg.
Sponsored by: DARPA, AFRL
This is derived from the mps(4) driver, but it supports only the 12Gb
IT and IR hardware including the SAS 3004, SAS 3008 and SAS 3108.
Some notes about this driver:
o The 12Gb hardware can do "FastPath" I/O, and that capability is included in
this driver.
o WarpDrive functionality has been removed, since it isn't supported in
the 12Gb driver interface.
o The Scatter/Gather list handling code is significantly different between
the 6Gb and 12Gb hardware. The 12Gb boards support IEEE Scatter/Gather
lists.
Thanks to LSI for developing and testing this driver for FreeBSD.
share/man/man4/mpr.4:
mpr(4) man page.
sys/dev/mpr/*:
mpr(4) driver files.
sys/modules/Makefile,
sys/modules/mpr/Makefile:
Add a module Makefile for the mpr(4) driver.
sys/conf/files:
Add the mpr(4) driver.
sys/amd64/conf/GENERIC,
sys/i386/conf/GENERIC,
sys/mips/conf/OCTEON1,
sys/sparc64/conf/GENERIC:
Add the mpr(4) driver to all config files that currently
have the mps(4) driver.
sys/ia64/conf/GENERIC:
Add the mps(4) and mpr(4) drivers to the ia64 GENERIC
config file.
sys/i386/conf/XEN:
Exclude the mpr module from building here.
Submitted by: Steve McConnell <Stephen.McConnell@lsi.com>
MFC after: 3 days
Tested by: Chris Reeves <chrisr@spectralogic.com>
Sponsored by: LSI, Spectra Logic
Relnotes: LSI 12Gb SAS driver mpr(4) added
NetFPGA-10G Embedded CPU Ethernet Core.
The current version operates on a simple PIO based interface connected
to a NetFPGA-10G port.
To avoid confusion: this driver operates on a CPU running on the FPGA,
e.g. BERI/mips, and is not suited for the PCI host interface.
MFC after: 1 week
Relnotes: yes
Sponsored by: DARPA/AFRL
Remove the uart support in favour of a "jtag-uart" interface imitation
providing a much simpler interface, directly exported to the host,
allowing the toolchain to be shared with BERI on Altera. [1]
Submitted by: Jong Hun HAN (jong.han cl.cam.ac.uk) [1]
MFC after: 2 weeks
There's plenty of hints that I haven't yet fleshed out and are hardcoded
in arswitch_8327.c. They're listed here (from OpenWRT) for completeness.
This is enough to get the thing up, running and pinging.
Note that the mdiobus for the on-switch switch changes - the AR8327
probes first, which exposes mdio1, and thus the arge1 mdiobus will probe
and attach as mdio2. That is what the AR9344 on-chip switch has to
attach to.
Tested:
* Qualcomm Atheros DB120
The on-board NIC is an 3x3 AR9380 with 5GHz only.
* enable pci code in AR9344_BASE
* enable ath_pci and the firmware loading bits in DB120
* add in the relevant hints in DB120.hints to inform the probe/attach
code where the PCIe fixup data is for the onboard chip.
This is only relevant for a default development board. I also have a
DB120 with the on-board PCIe wifi NIC disabled and it's exposed as
a real PCIe slot (to put normal PCIe NICs in); the fixup code will need
to be disabled to make this work correctly.
Tested:
* DB120
The uboot mapping is only 128KiB (0x20000) and not 2MiB (0x200000).
Dynamically adjust kernel and rootfs mappings based on the
geom_uncompress(4) magic.
This makes the built images more reliable by accepting changes on kernel
size transparently and matches the images built with zrouter and
freebsd-wifi-build.
Tested by: gjb
Approved by: adrian (mentor)
Obtained from: Zrouter
board.
This is another AR9331 board similar to the Carambola2. It has different
ethernet and LED wiring though.
They make a variety of boards that mostly differ on the amount of RAM/flash
available. Alfa Networks graciously donated a handful of 64MB RAM/16MB flash
boards so I can finish off 802.11s support for the AR93xx chips and do up
a tech demonstration with it.
This is enough to bring up the board.
Tested:
* Alfa networks UB Hornet board - 64MB ram, 16MB flash version.
Thankyou to Alfa Networks for the development boards!
Sponsored by: Alfa Networks (hardware only)
Switch the majority of device configuration to FDT from hints.
Add BERI_*_BASE configs to reduce duplication in the MDROOT and SDROOT
kernels.
Add NFS and GSSAPI support by default.
MFC after: 3 days
Sponsored by: DARPA/AFRL
the cfi(4) driver. It remained in the tree longer than would be ideal
due to the time required to bring cfi(4) to feature parity.
Sponsored by: DARPA/AFRL
MFC after: 3 days
we can now add all the hardware bits for the DB120.
* arge0/argemdio0 is hooked up to an AR8327 switch - which there's currently
no support for. However, the bootloader on this board does set it up as
a basic switch so we can at least _use_ it ourselves.
So we should at least configure the arge0 side of things, including the GMAC
register.
* .. the GMAC config peels off arge0 from the internal switch and exposes it
as an RGMII to said AR8327.
* arge1/argemdio1 are hooked up to an internal 10/100 switch. So, that also
needs configuring.
* Add support for the NOR flash layout.
* Add support for the wifi (which works, with bugs, but it works.)
What's missing!
* No GPIO stuff yet!
* No sound (I2S) and no NAND flash support yet, sorry!
* The normal DB120 has an external AR95xx wifi chip on PCIe but with the
actual calibration data in the NOR flash. My DB120 has been modified
to let me use the PCIe slot as a normal PCIe slot. I'll add the "default"
settings later when I have access to a non-modified one.
* Other stuff, like why the wifi unit gets upset and spits out stuck beacons
and interrupt storms everywhere. Sigh.
Tested:
* DB120 board - AR9344 (mips74k SoC) booting off of SPI flash into multi-user
mode.
wireless home router.
Notable things:
2x 16 MB flash devices
Atheros Wireless
Atheros Switching
Many thanks to adrian@ for his guidance on this and keeping the drivers in
the base system up to date
Approved by: re (delphij)
This is a nice small outdoor/indoor AP from Ubiquity Networks.
The device has:
AR7241 CPU SoC
AR9287 Wifi
8MB flash
32MB RAM
wifi has been tested to work along with leds.
Submitted by: loos
Approved by: sbruno (mentor, implicit)
Tested by: hiren
form xx:xx:xx:xx:xx:xx complete with ":" characters taking of 18 bytes
instead of 6 integers. Expose a "readascii" tuneable to handle this case.
Remove restriction on eepromac assignement for the first dev instance only.
Add eepromac address for DIR-825 to hints file.
Add readascii hint for DIR-825
Reviewed by: adrian@
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
DB120 development board.
The AR934x SoCs are a MIPS74k based system with increased RAM addressing
space, some scratch-pad RAM, an improved gige switch PHY and 2x2 or 3x3
on-board dual-band wifi.
This support isn't complete by any stretch; it's just enough to bring
the board up for others to tinker with. Notably, the MIPS74k support
is broken. However it boots enough to echo some basic probe/attach
messages, before dying somewhere in the TLB code.
Thankyou to Qualcomm Atheros for their continued support of me doing
open source work with their hardware.
Tested:
* AR9344, mips74k
This is an AR7240 based device with an AR9285 on-board.
I've tested the initial boot and wifi support; however at the moment
the ethernet switch driver doesn't seem to be picking up carrier on the
active ethernet port. Basic flood pinging works however, so I think
we're on the right track.
Thank you to Adrian Woodley <adrian@diskworld.com.au> for purchasing me
one of these devices to bootstrap FreeBSD-HEAD on.
This is based on the AR933x (Hornet) SoC from Qualcomm Atheros.
It's a much nicer board to do development on - 64MB RAM, 16MB flash.
The development board breaks out the GPIO pins, ethernet, serial (via
a USB<->RS232 chip), USB host and of course a small wifi antenna.
Everything but the wifi works thus far.
Until an ADM6996 driver shows up, this allows for the two switch
ports to be used.
Submitted by: Luiz Otavio O Souza <loos.br@gmail.com>
Reviewed by: ray
* arge0 is MII
* arge1 is GMII
* the MDIO bus is on arge1, not arge0
* the default switch config is to have ports 0-3 as the switch group,
with port 4 being an external PHY dedicated to arge0 (ie, 'cpu' port.)
Whilst I'm here, remove unused bits and pieces from the config.
Tested:
* AP121, ping on both arge0 and arge1
* Tested switch port detection using etherswitchcfg
This implements the bus transmit/receive/sigchg/ipend methods with
a polled interrupt handler (ipend) rather than enabling hardware
interrupts.
The FIFO is faked at 16 bytes deep for now, just so the transmit
IO side doesn't suck too bad (the callout frequency limits how quickly
IO is flushed to the sender, rather than scheduling the callout more
frequently whilst there's active TX. But I digress.)
Tested:
* Atheros AP121 (AR9330) reference board, booting to multi-user interactive
mode.
most kernels before FreeBSD 9.0. Remove such modules and respective kernel
options: atadisk, ataraid, atapicd, atapifd, atapist, atapicam. Remove the
atacontrol utility and some man pages. Remove useless now options ATA_CAM.
No objections: current@, stable@
MFC after: never
reducing the number of runtime checks done by the SDK code.
o) Group board/CPU information at early startup by subject matter, so that e.g.
CPU information is adjacent to CPU information and board information is
adjacent to board information.
* add cam as a module to build - but build in scbus/da for now, as
"cam" as a module includes all cam devices. Hardly space saving.
* Don't build FFS snapshot support.
This has an AR7240 SoC with an AR9285 wireless NIC on-board.
Since the kernel partition on the 4MiB flash is 960KiB, quite a bit
is disabled to try and squeeze the build into that. Even lzma'ed,
it's still quite large.
802.11n router.
The flash layout defaults to a 1 MiB section for the kernel so I'm trying
very hard to squeeze a minimialistic (LZMA compressde) kernel image into
that.
I've verified that it boots through to single user mode fine.
Issues:
* USB doesn't yet work as a module - I need to add something else to the
USB AR71xx build before that will work.
* There's no switch PHY support - but for now it quite happily behaves
as a useful dumb switch out of the box. Phew.
* Since a previous flash attempt trashed my radio configuration block,
I haven't yet verified whether the wireless works correctly.
I'll test that out shortly (read: once I re-calibrate the board somehow.)
Thanks to ray@ and the zrouter project for doing some of the initial
hard work in figuring out how to bring this board up.
Terasic DE-4 board. Allow LED configuration to be set using loader
tunables, not just from userspace, and preconfigure LED 8 as a kernel
heartbeat. For now, this is a Nexus-attached, BERI-only driver, but it
could be used with other hard and soft cores on Altera FPGAs as well, in
principle.
Sponsored by: DARPA, AFRL
used with Terasic's DE-4 and other similar FPGA boards. This display
is 800x480 and includes a capacitive touch screen, multi-touch
gesture recognition, etc. This device driver depends on a Cambridge-
provided IP core that allows the MTL device to be hooked up to the
Altera Avalon SoC bus, and also provides a VGA-like text frame buffer.
Although it is compiled as a single device driver, it actually
implements a number of different device nodes exporting various
aspects of this multi-function device to userspace:
- Simple memory-mapped driver for the MTL 24-bit pixel frame buffer.
- Simple memory-mapped driver for the MTL control register set.
- Simple memory-mapped driver for the MTL text frame buffer.
- syscons attachment for the MTL text frame buffer.
This driver attaches directly to Nexus as is common for SoC device
drivers, and for the time being is considered BERI-specific, although
in principle it might be used with other hard and soft cores on
Altera FPGAs.
Control registers, including touchscreen input, are simply memory
mapped; in the future it would be desirable to hook up a more
conventional device node that can stream events, support kqueue(2)/
poll(2)/select(2), etc.
This is the first use of syscons on MIPS, as far as I can tell, and
there are some loose ends, such as an inability to use the hardware
cursor. More fundamentally, it appears that syscons(4) assumes that
either a host is PC-like (i386, amd64) *or* it must be using a
graphical frame buffer. While the MTL supports a graphical frame
buffer, using the text frame buffer is preferable for console use.
Fixing this issue in syscons(4) requires non-trivial changes, as the
text frame buffer support assumes that direct memory access can be
done to the text frame buffer without using bus accessor methods,
which is not the case on MIPS. As a workaround for this, we instead
double-buffer and pretend to be a graphical frame buffer exposing
text accessor methods, leading to some quirks in syscons behaviour.
Sponsored by: DARPA, AFRL
The driver attempts to support all documented parts, but has only been
tested with the 512Mbit part on the Terasic DE4 FPGA board. It should be
trivial to adapt the driver's attach routine to other embedded boards
using with any parts in the family.
Also import isfctl(8) which can be used to erase sections of the flash.
Sponsored by: DARPA, AFRL
The configuration is:
* RGMII, both ports
* arge0 - connected to PHY4 as a dedicated port (CPU port)
* arge1 - connected to the switch ports
I've verified this on my routerstation pro board.
* Add the i2c bitbang bus;
* Add the etherswitch/rtl8366rb drivers;
* "fix" the USB GPIO configuration so USB actually works.
Submitted by: Stefan Bethke <stb@lassitu.de>
The AP93 has:
* AR7240 - mips24k processor with integrated 10/100 switch and
various other peripherals;
* AR9283 - 2x2 2.4GHz 802.11n (with calibration data in flash);
* 64MB RAM;
* 16MB SPI flash.
The switch code detects as an AR8216 at the present moment, which isn't
_entirely_ strictly true. However, the MII/MDIO routing in AP93.hints
works - the arge0 MAC connects to PHY4 in the switch, but via the
switch internal MDIO bus. The switch connects to arge0's MDIO bus,
but only to export the switch registers.
Thanks to stb and ray for the switch work, and ray for helping determine
what the correct switch hints should be for this thing.
some of the IPI mechanisms used by the common MIPS SMP code so we could use
the multicast IPI facilities, on GXemul as well as on several real hardware
platforms, and the ability to have multiple hard IPI types.