as an EDMA check function.
For the AR9003 and later NICs, different TX/RX DMA and descriptor handling
code will be conditional on the EDMA check.
Obtained from: Qualcomm Atheros
* Add a new ANI variable, for AR9003 and later chips;
* The AR9003 and later series chips support two RX queues now, so start
down the road of supporting that;
* Add some new TX queue types - uAPSD is possible on earlier chips,
but PAPRD is relevant to AR9003 and later.
Obtained from: Qualcomm Atheros, Linux ath9k
with AMPDU aggregate delimiters.
If there's an OFDM restart during an aggregate, the hardware ACKs
the previous frame, but communicates the RXed frame to the hardware
as having had CRC delimiter error + OFDM_RESTART phy error.
The frame however didn't have a CRC error and since the hardware ACKed
the aggregate to the sender, it thinks the frame was received.
Since I have no idea how often this occurs in the real world, add a
debug statement so trigger whenever this occurs. I'd appreciate an
email if someone finds this particular situation is triggered.
The Linux ath9k btcoex code is based off of this code.
Note this doesn't actually implement functional btcoex; there's some
driver glue and a whole lot of verification that is required.
On the other hand, I do have the AR9285+BT and AR9287+BT NICs which
this code supports..
Obtained from: Qualcomm Atheros, Linux ath9k
and the CRC error bits set. The radar payload is correct.
When this happens, the stack doesn't see them PHY error frames and
isn't interpreted as a PHY error. So, no radar detection and no radiotap
PHY error handling.
Now, this may introduce some weird issues if the MAC sends up some other
combination of CRC error + PHY error frames; this commit would break that
and mark them as PHY errors instead of CRC errors.
I may tinker with this a little more to pass radar/early radar/spectral
frames up as PHY errors if the CRC bit is set, to restore the previous
behaviour (where if CRC is set on a PHY error frame, it's marked as a CRC
error rather than PHY error.)
Tested on: AR5416, over the air, to a USRP N200 which is generating a
large number of a variety of radar pulses.
TODO: Test on AR9130, AR9160, AR9280 (and maybe radar pulses on
2GHz on AR9285/AR9287.)
PR: kern/169362
* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
on AR9280 and later, so create a method to do it.
* Use it for the AR9287 analog writes.
* Re-indent and style(9) the code.
This just requires a little HAL change (add a new config parameter) and
some glue in if_ath_pci.c, however I'm leaving this up for someone else
to do.
Obtained from: Qualcomm Atheros
These aren't strictly needed at the moment as we're not doing APSM
and forcing the NIC in and out of network sleep. But, they don't hurt.
Tested:
* AR9280 (mini-PCIe)
Obtained from: Qualcomm Atheros, Linux ath9k
* Now that ah_configPCIE is called for both power on and suspend/resume,
make sure the right bit(s) are cleared and set when suspending and
resuming. Specifically:
+ force disable/enable the PCIe PHY upon suspend/resume;
+ reprogram the PCIe WAR register when resuming and upon power-on.
* Add a recipe which powers down any PCIe PHY hardware inside the AR5416
(which is the PCI variant) to save on power. I have (currently) no way
to test exactly how much power is saved, if any.
Tested on:
* AR5416 cardbus - although unfortunately pccard/cbb/cardbus currently
detaches the NIC upon suspend, I don't think it's a proper test case.
* AR5418 PCIe attached to expresscard - since we're not doing PCIe APSM,
it's also not likely a full/good test case.
In both instances I went through a handful of suspend/resume cycles and
ensured that the STA vap reassociated correctly.
TODO:
* Setup a laptop to simply sit in a suspend/resume loop, making sure that
the NIC always correctly comes back;
* Start doing suspend/resume tests with actual traffic going on in the
background, as I bet this process is all quite racy at the present;
* Test adhoc/hostap mode, just to be completely sure it's working correctly;
* See if I can jury rig an external power source to an AR5416 to test out
whether ah_disablePCIE() works.
Obtained from: Qualcomm Atheros
* Add some other WAR bits (very usefully described too) in preparation for
porting over some suspend/resume fixes from ath9k/Atheros.
Obtained from: Qualcomm Atheros
not to disable the PCIe PHY in prepration for reset.
Extend the enablepci method to have a "poweroff" flag, which if equal
to true means the hardware is about to go to sleep.
* Flesh out the pcie disable method for 11n chips, as they were defaulting
to the AR5212 (empty) PCIe disable method.
* Add accessor macros for the HAL PCIe enable/disable calls.
* Call disable on ath_suspend()
* Call enable on ath_resume()
NOTE:
* This has nothing to do with the NIC sleep/run state - the NIC still
will stay in network-run state rather than supporting network-sleep
state. This is preparation work for supporting correct suspend/resume
WARs for the 11n PCIe NICs.
TODO:
* It may be feasible at this point to keep the chip powered down during
initial probe/attach and only power it up upon the first configure/reset
pass. This however would require correct (for values of "correct")
tracking of the NIC power configuration state from the driver and that
just isn't attempted at the moment.
Tested:
* AR9280 on my Lenovo T60, but with no suspend/resume pass (yet).
in the HAL. That's very memory hungry (32k just for channel statistics)
which would be better served by keeping a summary in the ANI state.
Or, later, keep a survey history in net80211.
So:
* Migrate the ah_chansurvey array to be a single entry, for the current
channel.
* Change the ioctl interface and ANI code to just reference that.
* Clear the ah_chansurvey array during channel reset, both in the AR5212
and AR5416 reset path.
* Always call ar5416GetListenTime()
* Modify ar5416GetListenTime() to:
+ don't update the ANI state if there isn't any ANI state;
+ don't update the channel survey state if there's no active
channel - just to be paranoid
+ copy the channel survey results into the current sample slot
based on the current channel; then increment the sample counter
and sample history counter.
* Modify ar5416GetMIBCyclesPct() to simply return a HAL_SURVEY_SAMPLE,
rather than a set of percentages. The ANI code wasn't using the
percentages anyway.
TODO:
* Create a new function which fetches the survey results periodically
* .. then modify the ANI code to use the pre-fetched values rather than
fetching them again
* Roll the 11n ext busy function from ar5416_misc.c to update all the
counters, then do the result calculation
* .. then, modify the MIB counter routine to correctly fetch a snapshot -
freeze the counters, fetch the values, then reset the counters.
The reference driver has a 3ms delay for the AR9130 but I'm not as yet
sure why. From what I can gather, it's likely waiting for some FIFO
flush to occur.
At some point in the future it may be worthwhile adding a WMAC
FIFO flush here, but that'd require some side-call through to the SoC
DDR flush routines.
Obtained from: Atheros
which will be needed for AR7010 and AR9287 USB access.
The names differ slightly from Linux and Atheros, for the sake of
consistency.
A lot more work is required in order to convert the 11n HAL support to
fully support USB.
at least until I can root cause what's going on.
The only platform I've seen this on is the AR9220 when attached to
the AR71xx CPUs. I get immediate PCIe bus errors and all subsequent
accesses cause further MIPS bus exceptions. I don't have any other
big-endian platforms to test this on.
If I get a chance (or two), I'll try to whack this on a bus analyser
and see exactly what happens.
I'd rather leave this on, especially for slower, embedded platforms.
But the #ifdef hell is something I'm trying to avoid.
Linux ath9k doesn't have this issue as it doesn't try queuing multi-
descriptor frames to the hardware.
Before, I was only setting the first and last descriptor in the final
frame correctly - and that was done by accident. The first descriptor in
the last sub-frame was being correctly updated by ath_tx_setds_11n();
the last descriptor in the last sub-frame was being correctly updated
by ath_buf_set_rate(). But both of those are "incorrect".
The correct behaviour is:
* AR_IsAggr is set for all descriptors for all subframes in an aggregate.
* AR_MoreAggr is set for all descriptors for all non-final sub-frames
in an aggregate.
Ie, all descriptors in the last sub-frame of an aggregate must have this
field set to 0.
I still need to do a couple of extra passes to ensure the pad delimiter
field is being correctly handled in all descriptors in the last sub-frame.
by capabilities.
Add an ar5416SetCapability() function, which contains logic to override
the chainmask and update the relevant stream.
This is designed to be called after the attach function, which presets
the TX/RX chainmask and stream.
TODO: check the chainmask against the hardware chainmask so non-existing
chains aren't enabled.
* Override the TX/RX stream count if the EEPROM reports a single RX or
TX stream, rather than assuming the device will always be a 2x2 strea
device.
* For AR9280 devices, don't hard-code 2x2 stream. Instead, allow the
ar5416FillCapabilityInfo() routine to correctly determine things.
The latter should be done for all 11n chips now that
ar5416FillCapabilityInfo() will set the TX/RX stream count based on the
active TX/RX chainmask in the EEPROM.
Thanks to Maciej Milewski for donating some AR9281 NICs to me for
testing.
* For legacy NICs, the combined RSSI should be used.
For earlier AR5416 NICs, use control chain 0 RSSI rather than combined
RSSI.
For AR5416 > version 2.1, use the combined RSSI again.
* Add in a missing AR5212 HAL method (get11nextbusy) which may be called
by radar code.
This serves no functional change for what's currently in FreeBSD.
to being more generic.
Other embedded SoCs also throw the configuration/PCI register
info into flash.
For now I'm just hard-coding the AR9280 option (for on-board AR9220's on
AP94 and commercial designs (eg D-Link DIR-825.))
TODO:
* Figure out how to support it for all 11n SoC NICs by doing it in
ar5416InitState();
* Don't hard-code the EEPROM size - add another field which is set
by the relevant chip initialisation code.
* 'owl_eep_start_loc' may need to be overridden in some cases to 0x0.
I need to do some further digging.
where they've disabled all the wireless devices/framework.
This is just a build workaround. If you're actively using wireless,
you must still define AH_SUPPORT_AR5416 as I'm not sure what else
will break!
The real solution is to make the module build depend if AH_SUPPORT_AR5416
is defined, as well as make the 11n code in if_ath_tx.c and if_ath_tx_ht.c
completely optional (maybe depend upon ATH_SUPPORT_11N.)
relying on what the register defaults are.
This forces the blink mode to be proportional to the TX and RX frames
which match the RX filter.
This (along with a few tweaks to if_ath_led.c to configure the correct
GPIO pins) allows my DWA-552 AR5416 NIC to blink the LEDs in a useful
fashion, however those LEDs are marked "Link" and "Act(ivity)", which
don't really map well to the "power" / "network" LED interface which
the MAC provides. Some further tinkering is needed to see what other
useful operating modes are possible.
state from correctly updating things.
The reference driver directly enables/disables the LED state as required,
rather than nailing it up like it currently is. That'll have to come
later by adding some further HAL methods.
Obtained from: Atheros
* Bring the AR5416 GPIO mux mask code in line with the code from the
HAL.
* Add HAL_DEBUG_GPIO debugging statements, to track what's going on.
* Add Kiwi GPIO specific changes for reading values back.
Obtained from: Atheros
* As a preparation for AR9287 GPIO support, add in the AR9287 GPIO mask.
* Fix the association mask values; these are post-shift values but were
being shifted in twice. This resulted in some garbage being written
in the wrong place and the link LED (at least on my d-link AR5416
NIC) giving totally incorrect blink patterns.
There's currently no public code which uses this feature and the
current reference driver doesn't enable this feature at all.
It's possible it was used by a previous version of the driver and
that indeed it should return HAL_STATUS; but at this point I'm
happy to require that they complain and submit a patch.
This was found by LLVM compile-time type checking.
Submitted by: dim
and sys/dev/ath/ath_hal/ar5416/ar5416_misc.c:
sys/dev/ath/ath_hal/ar5212/ar5212_misc.c:577:24: warning: implicit conversion from enumeration type 'HAL_STATUS' to different enumeration type 'HAL_BOOL' [-Wconversion]
return HAL_EINVAL;
~~~~~~ ^~~~~~~~~~
and:
sys/dev/ath/ath_hal/ar5416/ar5416_misc.c:164:9: warning: implicit conversion from enumeration type 'HAL_STATUS' to different enumeration type 'HAL_BOOL' [-Wconversion]
return HAL_OK;
~~~~~~ ^~~~~~
In both cases, enums HAL_BOOL and HAL_STATUS are mixed up.
MFC after: 1 week
and sys/dev/ath/ath_hal/ar5211/ar5211_power.c:
sys/dev/ath/ath_hal/ar5210/ar5210_power.c:36:3: warning: signed shift result (0x200000000) requires 35 bits to represent, but 'int' only has 32 bits [-Wshift-overflow]
OS_REG_RMW_FIELD(ah, AR_SCR, AR_SCR_SLE, AR_SCR_SLE_ALLOW);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sys/dev/ath/ath_hal/ah_internal.h:472:42: note: expanded from:
(OS_REG_READ(_a, _r) &~ (_f)) | (((_v) << _f##_S) & (_f)))
^
sys/dev/ath/ah_osdep.h:127:49: note: expanded from:
(bus_space_handle_t)(_ah)->ah_sh, (_reg), (_val))
^~~~
The AR_SCR_SLE_{WAKE,SLP,NORM} values are pre-shifted in ar5210reg.h and
ar5211reg.h, while they should be unshifted, like in ar5212reg.h. Then,
when the OS_REG_RMW_FIELD() macro shifts them again, the values will
overflow, becoming effectively zero.
MFC after: 1 week
attached this way.
The AR5212 based NICs have a variety of RF frontends, so there's a linker set
which the AR5212 attach routine calls. The same framework is used for the
AR5416 and later but as there's a fixed RF frontend for each 11n NIC, it
is just directly attached.
However in the case of compiling a cut down HAL (eg _just_ AR9130 WMAC support),
the linker set ends up being empty and this causes the compile to fail.
So this is just a workaround for that - it means those users who wish an 11n
only HAL can compile the 11n chipsets and RF frontend they need, and just
"ath_ar5212" for the AR5212/AR5416 common code, and it'll just work.
Sponsored by: Hobnob, Inc.
mode configuration registers. This is apparently required for correct
behaviour, but also requires the chip to actually officially support it.
Sponsored by: Hobnob, Inc.
I need to investigate this a little closer, but it seems that in noisy
environments the NF load takes longer than 5 * DELAY(10) and this is
messing up future NF calibrations. (The background: NF calibrations
begin at the value programmed in after the load has completed, so
if this is never loaded in, the NF calibrations only ever start at
the currently calibrated NF value, rather than starting at something
high (say -50.)
More investigation about the effect on 11n RX and calibration results
are needed.
Sponsored by: Hobnob, Inc.
The AR5416 MAC (which shows up in the AR5008, AR9001, AR9002 devices) has
issues with PCI transactions on SMP machines. This work-around enforces
that register access is serialised through a (global for now) spinlock.
This should stop the hangs people have seen with the AR5416 PCI devices
on SMP hosts.
Obtained by: Linux, Atheros
to fetch the current channel busy statistics, rather than duplicating
it here.
This forms the (very crude) basis for doing basic channel surveying.
Sponsored by: Hobnob, Inc.
enabled if required by STA operation.
This quietens a lot of OFDM errors seen in hostap mode, where
there are no beacon RSSI levels to tune the dynamic range of the
baseband.
This may reduce reception range at the fringes, but does increase
stability.
Sponsored by: Hobnob, Inc.
The 5ghz hostap mode (where DFS is being done) requires ANI to be disabled
or the radar detection parameters don't work as advertised (as they're based
on signal strength level, and tweaking ANI affects the signal strangth,
dynamic range and power increase the baseband is looking for in order to
detect it as a "signal".)
Obtained from: Linux, Atheros
Sponsored by: Hobnob, Inc.
* If we fall through from an ANI command (eg because it's out of range,
or it's disabled) then fall through to the next ANI command rather then
being stuck there.
* Fix some off-by-one comparisons, meaning the final level in some parameters
were never tweaked.
Obtained from: Atheros
Sponsored by: Hobnob, Inc.
This forces a full reset of the baseband/radio and seems needed to clear
some issues (with Merlin at least) when the baseband gets confused in a
very noisy environment.
Sponsored by: Hobnob, Inc.
RX clear, RX extension clear.
This is useful for estimating channel business.
The same routines should be written for AR5210->AR5212 where appopriate.
Obtained from: Atheros
some unmerged interrupt status debugging code from my branch.
* Add ah_intrstate[8] which will have the record of the last
call to ath_hal_getintr().
* Wrap the KTR code behind ATH_KTR_INTR_DEBUG.
* Add the HAL interrupt debugging behind AH_INTERRUPT_DEBUGGING.
This is only done for the AR5416 and later NICs but it will be
trivial to add to the earlier NICs if required.
Neither are enabled by default, although to minimise HAL binary
API differences, the ah_intrstate[] array is always compiled into
the ath_hal struct.
* preserve AR_TxIntrReq on every descriptor in an aggregate chain,
not just the first descriptor;
* always blank out the descriptor in ar5416ChainTxDesc() when forming
aggregates - the way I'm using this in the 11n branch is to first
chain aggregates together, then use the other HAL calls to fill in
the details.
* Add the TID field in the TX status descriptor;
* Add in the 11n first/middle/last functions for fiddling
with the descriptors. These are from the Linux and the
reference driver, but I'm not (currently) using them.
* Add further AR_ISR_S5 register definitions.
Obtained from: Linux ath9k, Atheros
interfere with traffic, as the NF load can take quite a while and poking the
AGC every 10uS is just a bit silly.
Instead, just leave the baseband NF calibration where it is and just read it
back next time a longcal interval happens.
The final missing bit here is enabling the PCI configuration register
read, but there's currently no glue available for the HAL to read (and
write) PCI configuration space registers.
Obtained from: Atheros
The AR5008/AR9001 series NICs have a bug where BB register reads
will occasionally be corrupted. This could cause issues with things
such as ANI, which adjust operational parameters based on the
BB radio register reads. This was introduced in the AR5008 chip
and fixed with the first released AR9002 series NIC (AR9280v2.)
A followup commit will implement the acutal WAR when reading
BB registers. I'm still not sure how I'll implement it - whether
it should be done in the osdep layer, or whether it should just
live in the AR5416 HAL. Either way, they can use this capability
bit to determine whether to implement the WAR or not.
Thankyou to various sources inside Atheros who have helped me track
down what this particular issue is.
Obtained from: Atheros
Pre-11n devices and AR5416 use AR_PHY(263) for current RX RSSI.
AR9130 and later have a fourth calibration register (for doing
ADC calibration) and thus the register has moved to AR_PHY(271).
This isn't currently used by any of the active code; I'm committing
this for completeness and in case any third party code attempts to
use it for legacy reasons.
* The AR_ISR_RAC interrupt processing method has a subtle bug in all
the MAC revisions (including pre-11n NICs) until AR9300v2.
If you're unlucky, the clear phase clears an update to one of the
secondary registers, which includes TX status.
This shows up as a "watchdog timeout" if you're doing very low levels
of TX traffic. If you're doing a lot of non-11n TX traffic, you'll
end up receiving a TX interrupt from some later traffic anyway.
But when TX'ing 11n aggregation session traffic (which -HEAD isn't yet
doing), you may find that you're only able to TX one frame (due to
BAW restrictions) and this may end up hitting this race condition.
The only solution is to not use RAC and instead use AR_ISR and the
AR_ISR_Sx registers. The bit in AR_ISR which represents the secondary
registers are not cleared; only the AR_ISR_Sx bits are. This way
any updates which occur between the read and subsequent write will
stay asserted and (correctly) trigger a subsequent interrupt.
I've tested this on the AR5416, AR9160, AR9280. I will soon test
the AR9285 and AR9287.
* The AR_ISR TX and RX bits (and all others!) are set regardless of
whether the contents of the AR_IMR register. So if RX mitigation is
enabled, RXOK is going to be set in AR_ISR and it would normally set
HAL_INT_RX.
Fix the code to not set HAL_INT_RX when RXOK is set and RX mitigation
is compiled in. That way the RX path isn't prematurely called.
I would see:
* An interrupt would come in (eg a beacon, or TX completion) where
RXOK was set but RXINTM/RXMINT wasn't;
* ath_rx_proc() be called - completing RX frames;
* RXINTM/RXMINT would then fire;
* ath_rx_proc() would then be called again but find no frames in the
queue.
This fixes the RX mitigation behaviour to not overly call ath_rx_proc().
* Start to flesh out more correct timer interrupt handling - it isn't
kite/merlin specific. It's actually based on whether autosleep support
is enabled or not.
This is sourced from my 11n TX branch and has been tested for a few weeks.
Finally, the interrupt handling change should likely be implemented
for AR5210, AR5211 and AR5212.
There are some timing concerns which I've yet to fully map out.
In any case, there's an existing software driven mitigation method
for TX interrupts and when TX'ing 11n frames, the whole frame itself
generates an interrupt rather then the subframes.
Although I tried to fix this earlier by introducing HALDEBUG_G(), it
turns out there seem to be other cases where the pointer value is still
NULL.
* Fix DO_HALDEBUG() and the HALDEBUG macro to check whether ah is NULL
before deferencing it
* Remove HALDEBUG_G() as it's no longer needed
This is hopefully a merge candidate for 9.0-RELEASE as enabling
debugging at startup could result in a kernel panic.
rather than the whole beacon interval.
The reference driver and Linux ath9k both choose 80% of the
beacon interval and they do it in the driver rather than
the HAL (Ath reference) or ath9k_hw (ath9k.)
This quietens stuck beacon conditions on my AR9220/AR9280
based NICs when a lot of burst broadcast/multicast traffic
is going on. It doesn't seem to annoy the earlier MACs as
much as the AR9280 and later one.
Obtained from: Linux ath9k, Atheros
local variable with a beacon interval of 100 TU. This never gets modified
if the beacon interval configuration changes.
This may have been correct in earlier times, but with the advent of
staggered beacons (which default to 1 / ATH_BCBUF beacon interval, so
25 TU here) this value is incorrect.
It is used to configure the default CABQ readytime. So here, the cabq
was being configured to be much greater than the target beacon timer
(TBTT.)
The driver should be configuring a cabq readytime value rather then
leaving it to the HAL to choose sensible defaults. This should be
done in the future - I'm simply trying to ensure sensible defaults
are chosen.
This is another commit in a series of TDMA support fixes for the 11n NICs.
* Move ath_hal_getnexttbtt() into the HAL; write methods for it.
This returns a timer value in TSF, rather than TU.
* Move ath_hal_getcca() and ath_hal_setcca() into the HAL too, where they
likely now belong.
* Create a new HAL capability: HAL_CAP_LONG_RXDESC_TSF.
The pre-11n NICs write 15 bit TSF snapshots into the RX descriptor;
the AR5416 and later write 32 bit TSF snapshots into the RX descriptor.
* Use the new capability to choose between 15 and 31 bit TSF adjustment
functions in ath_extend_tsf().
* Write ar5416GetTsf64() and ar5416SetTsf64() methods.
ar5416GetTsf64() tries to compensate for TSF changes at the 32 bit boundary.
According to yin, this fixes the TDMA beaconing on 11n chipsets and TDMA
stations can now associate/talk, but there are still issues with traffic
stability which need to be investigated.
The ath_hal_extendtsf() function is also used in RX packet timestamping;
this may improve adhoc mode on the 11n chipsets. It also will affect the
timestamps seen in radiotap frames.
Submitted by: Kang Yin Su <cantona@cantona.net>
Approved by: re (kib)
reference driver does clear the async interrupts after each service.
I'll tinker with this in a future commit.
Obtained from: Atheros
Approved by: re (kib)
When the fast clock (44mhz) is enabled for 5ghz HT20, the
dual ADCs aren't enabled. Trying to do the ADC calibrations
here would result in calibration never completing; this
resulted in IQ calibration never running and thus performance
issues in 11a/11n HT20 mode.
Leave it enabled for non-fastclock (40mhz) 11a mode and
HT40 modes.
This has been fixed in discussion with Felix Fietkau (nbd)
and discussions with the Atheros baseband team.
Linux ath9k now has a similar fix.
Approved by: re (kib)
* Fix SLEEP1/SLEEP2 register definitions; the CAB/Beacon timeout
fields have changed in AR5416 and later
* The TIM_PERIOD and DTIM_PERIOD registers are now microsecond fields,
not TU.
Obtained from: Linux ath9k, Atheros reference
Approved by: re (kib, blanket)
or later. Previous hardware had some as TU, some as 1/8th
TU.
* Modify AR_NEXT_DBA and AR_NEXT_SWBA to use a new macro,
ONE_EIGHTH_TU_TO_USEC(), which converts the 1/8th TU
fields to USEC. This is just cosmetic and matches the
Atheros reference driver.
* Fix AR_NEXT_TBTT, which is USEC, not TU.
Submitted by: paradyse@gmail.com
Approved by: re (kib, blanket)
Remove this debugging, it's not needed anymore and when not enabled,
those variables trigger a compiler warning.
Approved by: re (kib, blanket)
Pointy-hat-to: adrian, for not testing a non-debug compile of this code enough
allows it to be overridden at runtime.
Thus, add a function which updates ah_dfsDomain after a channel set
call to ath_hal_set_channels().
Approved by: re (kib, blanket)
and the Atheros reference code.
The radar detection code needs to know what the current DFS domain is.
Since net80211 doesn't currently know this information, it's extracted
from the HAL regulatory domain information.
The specifics:
* add a new ath_dfs API hook, ath_dfs_init_radar_filters(), which
updates the radar filters whenever the regulatory domain changes.
* add HAL_DFS_DOMAIN which describes the currently configured DFS domain .
* add a new HAL internal variable which tracks the currently configured
HAL DFS domain.
* add a new HAL capability, HAL_CAP_DFS_DMN, which returns the currently
configured HAL DFS domain setting.
* update the HAL DFS domain setting whenever the channel setting is
updated.
Since this isn't currently used by any radar code, these should all
be no-ops for existing users.
Obtained from: Atheros
Submitted by: KBC Networks, sibridge
Approved by: re (kib, blanket)
if 5ghz fast clock is enabled in the current operating mode.
It's slightly dirty, but it's part of the reference HAL and used by
the (currently closed-source) radar event code to map radar pulses
back to microsecond durations.
Obtained from: Atheros
Approved by: re (kib, blanket)
the ar9130 code.
Since at least one kernel config specifies individual ath HAL chips
rather than just "device ath_hal" (arm/AVILA), I'm doing this so people
aren't caught out when they update to -HEAD or 9.0 and discover their
ath setup doesn't compile.
I'll revisit this with a proper fix sometime before 9.0-RELEASE.
Approved by: re (kib, blanket)
Pointed out by: ray@
Pointy hat to: adrian@
systems, in the same way that AR9130 embedded systems work.
This isn't -everything- that is required - the PCI glue still
needs to be taught about the eepromdata hint, along the same
lines as the AHB glue.
Approved by: re (kib, blanket)
This seems to indicate whether to program the NIC for fractional 5ghz
mode (ie, 5mhz spaced channels, rather than 10 or 20mhz spacing) or not.
The default (0) seems to mean "only program fractional mode if needed".
A different value (eg 1) seems to always enable fractional 5ghz mode
regardless of the frequency.
Obtained from: Atheros
Approved by: re (kib)
Calibration/PCI data that's written to flash (rather than EEPROM attached
to the NIC) is typically already in host-endian. The existing checks
end up swapping 16 bit words incorrectly - the correct solution would be
to read the magic value and determine the EEPROM endianness from that.
(This is what Linux does.)
This doesn't completely enable embedded use of the AR9285/AR9287 -
notably, the EEPROM read methods need to be made generic and available
to all EEPROM drivers. I'll worry about that later.
Approved by: re (kib)
* I messed up the order of parameter true/false; oops!
* AR_PHY_RADAR_1 was being written at the wrong place, and was writing
potential garbage to the hardware.
Approved by: re (kib)
* Teach the AR5212/AR5416 ANI code to use the RX filter methods, rather
than calling the RX filter routines directly.
* Make HAL_ANI_PRESENT and HAL_ANI_MODE unconditionally available,
regardless of whether ah_ani_function is masking it.
* (Mostly) fully disable ANI if interference mitigation is disabled.
When disabled, the ANI code doesn't touch any ANI/PHY registers,
leaving them the default value. This is in line with what the
Atheros reference driver does.
* Correctly set the ANI parameters during ANI reset, rather than
when ANI is enabled. In this way, if ANI is disabled or enabled
whilst the NIC is not active (and there's no current channel),
bogus parameters or a NULL pointer deference doesn't occur.
There's still some lingering issues - notably, the MIB events/interrupts
aren't fully disabled, so MIB interrupts still occur. I'll worry about
that later.
Approved by: re (kib)
This in particular fixes radar PHY handling - on the AR5212
NIC, one enables the AR_PHY_ERR_RADAR bit in AR_PHY_ERR;
the AR5416 and later also needs a bit set in AR_RX_FILTER.
A follow-up commit is needed to convert the AR5416 ANI code
to use this particular method, as it's currently using the
AR5212 methods directly.
Obtained from: Atheros
Approved by: re (kib)
the ADC calibrations if the NIC is in 5ghz 11a or 5ghz HT/20 modes.
I've been told that the dual-ADC is only engaged in turbo/40mhz modes.
Since Sowl (AR9160) seems to return valid-looking calibration data
in 5ghz 20MHz modes, I'm only disabling it for Merlin for now.
It may turn out I can disable it for all chipsets and only enable
it for 40MHz modes.
Approved by: re (kib)
It looks like this was mixed up with the AR9285 calibration code.
This code is now more in line with what Linux ath9k and Atheros
reference drivers do.
Obtained from: Atheros
Approved by: re (kib)
tools.
* introduce pe_enabled, which (will) indicate whether the radar
detection stuff is enabled or not. Right now it's incorrectly
set, based on something previously written. I'll sort it out
later.
* Don't set HAL_PHYERR_PARAM_ENABLE in pe_relstep to say whether
radar detection is on.
* Return whether blockradar, fir128 and enmaxrssi is enabled.
* Change some of the phyerr params to be integers rather than
HAL_BOOL so they can be set to the NOPARAM value when the
setup function is called. This is in line with other radar
parameters.
* Add new configuration parameters for fir128, blockradar and
enmaxrssi, rather than defaulting to off, on and on respectively.
Approved by: re (kib)
polluting the AR5416 code with later chipset support.
Note: ar9280InitPLL() supports Merlin (AR9280) and later (AR9285, AR9287.)
Submitted by: ssgriffonuser@gmail.com
Approved by: re (kib)
These should be disabled for the AR5416 in hostap/mesh/ibss mode,
as the AR5416 doesn't have support for radar detection on the
ext channel of a HT40 setup. Later chips do.
Approved by: re (kib)
reference driver.
* Australia should use FCC3_WORLD
* Add some new SKUs; these are just the EEPROM values and haven't been
fully defined yet. As such they won't affect anything.
Obtained from: Atheros
Approved by: re (kib)
to do about the few cases where the HAL state isn't available (regdomain)
or isn't yet setup (probe/attach.)
The global ath_hal_debug now affects all instances of the HAL.
This also restores the ability for probe/attach debugging to work; as
the sysctl tree may not be attached at that point. Users can just set
the global "hw.ath.hal.debug" to a suitable value to enable probe/attach
related debugging.
rather than global variables.
This specifically allows for debugging to be enabled per-NIC, rather
than globally.
Since the ath driver doesn't know about AH_DEBUG, and to keep the ABI
consistent regardless of whether AH_DEBUG is enabled or not, enable the
debug parameter always but only conditionally compile in the debug
methods if needed.
The ALQ support is currently still global pending some brainstorming.
Submitted by: ssgriffonuser@gmail.com
Reviewed by: adrian, bschmidt
For the AR5211/AR5212, this is apparently a one byte pulse duration
counter value. It is only coded up here for the AR5212 as I don't have
any AR5211-series hardware to test it on.
This information was extracted from the Madwifi DFS branch along with
some local additions.
Please note - all this does is extract out the radar event duration,
it in no way reflects the presence of a radar. Further code is needed
to take a set of radar events and filter them to extract out correct
radar pulse trains (and ignore other events.)
For further information, please see:
http://wiki.freebsd.org/dev/ath_hal%284%29/RadarDetection
This includes references to the relevant patents which describe what
is going on.
Obtained from: Madwifi
Please note - this doesn't in any way constitute a full DFS
implementation, it merely adds the relevant capability bits and
radar detection threshold register access.
The particulars:
* Add new capability bits outlining what the DFS capabilities
are of the various chipsets.
* Add HAL methods to set and get the radar related register values.
* Add AR5212 and AR5416+ DFS radar related register value
routines.
* Add a missing HAL phy error code that's related to radar event
processing.
* Add HAL_PHYERR_PARAM, a data type that encapsulates the radar
register values.
The AR5212 routines are just for completeness. The AR5416 routines
are a super-set of those; I may later on do a drive-by pass to
tidy up duplicate code.
Obtained from: Linux, Atheros
This has been disabled until now because there hasn't been any supported
device which has this feature. Since the AR9287 is the first device to
support it, and since now the HAL has functional AR9287+11n support,
flip this on.